O ácido gama-linolênico interage com o canal de cálcio dependente de voltagem humano

aspectos no tratamento da mastalgia

Autores

DOI:

https://doi.org/10.56102/afmo.2025.388

Palavras-chave:

Ácido gama-linolênico, Mastalgia, Analgésico, Modelagem de drogas, Canal de cálcio dependente de voltagem

Resumo

Objetivos: Avaliar a correlação do ácido gama-linolênico (GLA) com o CaV3.2 e comparar com a pregabalina (PGB), como perspectiva de elucidar o mecanismo de ação analgésica do GLA em casos de mastalgia. Métodos: Refere-se a uma pesquisa quantitativa e experimental, do tipo in silico, que empregou como moléculas ligantes o GLA e a PGB, e, como alvo proteico, o canal CaV3.2. Os experimentos de docagem molecular foram realizados no portal Dockthor e analisados pelo programa Chimera 1.14. Os resultados das simulações dos ligantes com o CaV3.2 foram organizados pelas afinidades de ligação (AL). Para comparação das AL, foi utilizado o teste “t” e foram considerados significantes valores de p < 0,05. Resultados e discussão: Após 1 milhão de simulações entre GLA e PGB com o CaV3.2, selecionaram-se os três melhores posicionamentos. Não houve diferença significante entre os valores de AL do GLA e da PGB (p = 0,15). Os ligantes se posicionaram dentro do poro do canal e estabelecendo ligações de hidrogênios com os mesmos resíduos de aminoácido e PGB apresentou interação com um outro a mais. Conclusão: O GLA é capaz de se ligar ao CaV3.2 de maneira semelhante ao bloqueador controle pregabalina. As interações químicas mostradas sugerem um possível bloqueio do canal, o que justificaria o efeito no controle da mastalgia pelo ácido gama-linolênico.

Biografia do Autor

Gidelson José da Silva Júnior, Faculdade de Medicina de Olinda

Acadêmico da Faculdade de Medicina de Olinda. Olinda, Pernambuco, Brasil.

Gisele Evelin de Jesus Arruda, Faculdade de Medicina de Olinda

Acadêmica da Faculdade de Medicina de Olinda. Olinda, Pernambuco, Brasil.

Ana Carolina de Oliveira Aguiar, Faculdade de Medicina de Olinda

Acadêmica da Faculdade de Medicina de Olinda. Olinda, Pernambuco, Brasil.

Lais Cristhinne Sabino Gondim, Faculdade de Medicina de Olinda

Acadêmica da Faculdade de Medicina de Olinda. Olinda, Pernambuco, Brasil.

Lise Reis Melo, Hospital Universitário Lauro Wanderley

Médica mastologista vinculada ao Hospital Universitário Lauro Wanderley, Universidade Federal da Paraíba. João Pessoa, Paraíba, Brasil.

Joelmir Lucena Veiga da Silva, Faculdade de Medicina de Olinda

Docente na Faculdade de Medicina de Olinda. Olinda, Pernambuco, Brasil.

Referências

Olawaiye A, Withiam-Leitch M, Danakas G, Kahn K. Mastalgia: a review of management. J Reprod Med. 2005;50(12):933-9. Disponível em: https://www.researchgate.net/publication/7328732_Mastalgia_A_review_of_management

Smith RL, Pruthi S, Fitzpatrick LA. Evaluation and management of breast pain. Mayo Clin Proc. 2004;79(3):353-72. https://doi.org/10.4065/79.3.353

Grullon S, Bechmann S. Mastodynia. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. 2022;32644675.

Dobryniewski J, Szajda SD, Waszkiewicz N, Zwierz K. Kwas gamma-linolenowy (GLA)— znaczenie terapeutyczne [The gamma-linolenic acid (GLA)—the therapeutic value]. Przegl Lek. 2007;64(2):100-2. Disponível em: https://www.researchgate.net/publication/5952444_The_gamma-linolenic_acid_GLA--the_therapeutic_value

Menke CH, et al. Rotinas em Mastologia. 1ª ed. Porto Alegre: Artes Médicas Sul; 2000;73.

Burbage J, Cameron L. An investigation into the prevalence and impact of breast pain, bra issues and breast size on female horse riders. J Sports Sci. 2017;35(11):1091-1097. https://doi.org/10.1080/02640414.2016.1210818

Functional nutrition and applicability of herbal medicines in the health of women with Premenstrual Syndrome: systematic review. Brazilian Journal of Health Review 2022;5(4):12766–12786. https://doi.org/10.34119/bjhrv5n4-067

Kapoor K, Huang Y-S. Gamma linolenic acid: an antiinflammatory omega-6 fatty acid. Current Pharmac Biotech 2006;7:531-534. https://doi.org/10.2174/138920106779116874

Zamponi GW, Striessnig J, Koschak A, Dolphin AC. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharm. Rev. 2015;67(4):821–870. https://doi.org/10.1124/pr.114.009654

Choi S, Na HS, Kim J, Lee J, Lee S, Kim D, Park J, Chen CC, Campbell KP, Shin HS. Attenuated pain responses in mice lacking Ca(V)3.2 T-type channels. Genes Brain Behav.2007;6(5):425–431. https://doi.org/10.1111/j.1601-183X.2006.00268.x

Talley EM, Cribbs LL, Lee JH, Daud A, Perez-Reyes E, Bayliss DA. Differential distribution of three members of a gene family encoding low voltage-activated (Ttype) calcium channels. J. Neurosci. 1999;19(6):1895–1911. https://doi.org/10.1523/jneurosci.19-06-01895.1999

Harding, E.K., Zamponi, G.W. Central and peripheral contributions of T-type calcium channels in pain. Mol Brain 15, 39 (2022). https://doi.org/10.1186/s13041-022-00923-w

Kamau PM, Li H, Yao Z, Han Y, Luo A, Zhang H, Boonyarat C, Yenjai C, Mwangi J, Zeng L, Yang S, Lai R, Luo L. Potent CaV3.2 channel inhibitors exert analgesic effects in acute and chronic pain models. Biomedicine & Pharmacotherapy 2022;153:113310. https://doi.org/10.1016/j.biopha.2022.113310

Jarvis MF, Scott VE, McGaraughty S, Chu KL, Xu J, Niforatos W, Milicic I, Joshi S, Zhang Q, Xia Z. A peripherally acting, selective T-type calcium channel blocker, ABT-639, effectively reduces nociceptive and neuropathic pain in rats, Biochem. Pharmacol. 2014;89(4):536–544. https://doi.org/10.1016/j.bcp.2014.03.015

Ziegler D, Duan WR, G. G, Thomas JW, Nothaft W. A randomized doubleblind, placebo-, and active-controlled study of T-type calcium channel blocker ABT-639 in patients with diabetic peripheral neuropathic pain. Pain 2015;156(10):2013–2020. https://doi.org/10.1097/j.pain.0000000000000263

Lee M. Z944: a first in class T-type calcium channel modulator for the treatment of pain. J. Peripher. Nerv. Syst. 2014;19(2):S11–S12. https://doi.org/10.1111/jns.12080_2

Snutch TP, Zamponi GW. Recent advances in the development of T-type calcium channel blockers for pain intervention. Br. J. Pharmacol. 2018;175(12):2375–2383. https://doi.org/10.1111/bph.13906

Asiamah I, Obiri SA, Tamekloe W, Armah FA, Borquaye LS. Applications of Molecular Docking in Natural Products-Based Drug Discovery. Scientific African 2023;S2468-2276. https://doi.org/10.1016/j.sciaf.2023.e01593

Teixeira LR, Silva Júnior JJ, Vieira PHS, Canto MVG, Figueirêdo AGM, Silva JLV. (2021). Tamoxifen inhibits the anion channel induced by Staphylococcus aureus α-hemolysin: electrophysiological and docking analysis. RSD [Internet]. 2021;10(2):e13010212326. https://doi.org/10.33448/rsd-v10i2.12326

Gentile F, Oprea TI, Tropsha A, Cherkasov A, (2023). Surely you are joking, Mr Docking! Chem. Soc. Rev. 2023;52:872–878. https://doi.org/10.1039/D2CS00948J

Sadybekov AV, Katritch V. Computational approaches streamlining drug discovery. Nature 2023;616:673–685. https://doi.org/10.1038/s41586-023-05905-z

Varela-Rial, A., Majewski, M., De Fabritiis, G., (2022). Structure based virtual screening: fast and slow. WIREs Comput. Mol. Sci. 2022;12:e1544. https://doi.org/10.1002/wcms.1544.

Bender BJ, Gahbauer S, Luttens A, Lyu J, Webb CM, Stein RM, Fink EA, Balius TE, Carlsson J, Irwin JJ, Shoichet BK. A practical guide to large-scale docking. Nature Protoc. 2021;16:4799–4832. https://doi.org/10.1038/s41596-021-00597-z

Guedes IA, Silva MMPS, Galheigo M, Krempser E, Magalhães CS, Barbosa HJC, Dardenne LE. DockThor-VS: A Free Platform for Receptor-Ligand Virtual Screening. Journal of Molecular Biology 2024;436(17):168548. https://doi.org/10.1016/j.jmb.2024.168548

Kataria K, Dhar A, Srivastava A, Kumar S, Goyal A. A Systematic Review of Current Understanding and Management of Mastalgia. Indian J Surg. 2014;76(3):217–222. https://doi.org/10.1007/s12262-013-0813-8

Liu ZL, Li L, Ma HL, Zhong QS, Ke JY, Zhang H. Mechanism of action of Zhishi Daozhi decoction in the treatment of diarrhea based on network pharmacology and molecular docking. Drug Combination Therapy 2023;5(1):1-8. https://doi.org/10.53388/DCT20230003

Du G, Qu X, Hu J, Zhang Y, Cai Y. Identification of Taohong Siwu Decoction in Treating Chronic Glomerulonephritis Using Network Pharmacology and Molecular Docking. Natural Product Communications 2022;17(11):1-12. https://doi.org/10.1177/1934578X221139966

Silva Júnior GJ, Arruda GEJ, Lira NBD, Lira NBD, Costa AEA, Morioka CY, Silva JLV. Pharmacological prospection of cannabidiol analgesic action through molecular docking: interactions with voltage-gated sodium channel Nav1.7. Rsd [Internet]. 2023;12(3):E30340292. https://doi.org/10.33448/Rsd-V12i3.40292

Harding EK, Zamponi GW. Central and peripheral contributions of T-type calcium channels in pain. Mol Brain. 2022;15(1):39. https://doi.org/10.1186/s13041-022-00923-w

Weiss N, Zamponi GW. (2020). Genetic T-type calcium channelopathies. Journal of Medical Genetics 2020;57(1):1–10. https://doi.org/10.1136/jmedgenet-2019-106163

Silva JLV, Leite AI, Ferreira EN, Silva FM, Pavin JP, Oliveira LC, Marcela Eduarda Leite ME, Araújo MV, Ferreira RN, Lamares RJTC, Melo LR. Gamma-linolenic acid interactions with the human voltage-gated sodium channel 1.7 by molecular docking: its role in the action mechanism on mastalgia. IOSR Journal Of Pharmacy And Biological Sciences 2023;18,6(3):33-37. DOI: 10.9790/3008-1806033337. Disponível em: https://www.iosrjournals.org/iosr-jpbs/papers/Vol18-issue6/Ser-3/G1806033337.pdf

Emery EE, Luiz AP, Wood JN. Nav1.7 and other voltage-gated sodium channels as drug targets for pain relief. Expert Opinion On Therapeutic Targets 2016;20(8): 975–983. http://dx.doi.org/10.1517/14728222.2016.1162295

Huang J, Fan X, Jin X, Lyu C, Guo Q, Liu T, Chen J, Davakan A, Lory P, Yan N. Structural basis for human Cav3.2 inhibition by selective antagonists. Cell Res 34, 440–450 (2024). https://doi.org/10.1038/s41422-024-00959-8

Taylor CP. Mechanisms of analgesia by gabapentin and pregabalin--calcium channel alpha2-delta [Cavalpha2-delta] ligands. Pain 2009;142(1-2):13-6. https://doi.org/10.1016/j.pain.2008.11.019

Calandre EP, Rico-Villademoros F, Slim M. Alpha2delta ligands, gabapentin, pregabalin and mirogabalin: a review of their clinical pharmacology and therapeutic use. Expert Rev Neurother. 2016;16(11):1263-1277. https://doi.org/10.1080/14737175.2016.1202764

Onakpoya IJ, Thomas ET, Lee JJ, Goldacre B, Heneghan CJ. Benefits and harms of pregabalin in the management of neuropathic pain: a rapid review and meta-analysis of randomised clinical trials. BMJ Open. 2019;9(1):e023600. https://doi.org/10.1136/bmjopen-2018-023600

Publicado

2025-08-28

Como Citar

Silva Júnior, G. J. da, Arruda, G. E. de J., Aguiar, A. C. de O., Gondim, L. C. S., Melo, L. R., & Silva, J. L. V. da. (2025). O ácido gama-linolênico interage com o canal de cálcio dependente de voltagem humano: aspectos no tratamento da mastalgia. Anais Da Faculdade De Medicina De Olinda, 1(13), 1–11. https://doi.org/10.56102/afmo.2025.388

Edição

Seção

Artigos Originais