Microbiological analysis of chitosan membranes with n-acylydrazone associations
evaluation of efficiency
DOI:
https://doi.org/10.56102/afmo.2024.322Keywords:
Chitosan, Healing, Membranes, WoundsAbstract
Objective: To verify the potential and bactericidal activity of chitosan (CS) films combined with N-acylhydrazone (JR19) in different concentrations for wound treatment. Methodology: Films were developed from chitosan (CS) + polyvinyl acetate (PVA) solutions. The F1 film consisted of CS and the F2 film consisted of CS + PVA in a 1:1 ratio. To incorporate JR19 in the polymeric solutions, 1 mg of sulfadiazine (AgSD) + 8.6 mg of JR19 were added in 10 mL of CS: PVA. Films formed from this solution were named F3, F4, and F5. The antimicrobial activity of films with JR19 derivatives was assessed using the disc diffusion technique in an Agar Müeller Hinton solid culture medium. Results: The F1 film was discarded due to strong electrostatic repulsion with solid agar culture medium, deforming the film and hampering the culture. The F2, F3, and F5 films showed bacterial colony formations in front and verse, indicating no microbial inhibitory activity on Staphylococcus aureus. Conclusion: In the F4 film, the synergy between JR19 and AgSD showed complementary properties that facilitate wound healing. However, the safety and efficacy of this alternative therapy need further investigation in clinical trials.
References
Verma, G., Marella, A., Shaquiquzzaman, M., Akhtar, M., Ali, M. R., & Alam, M. M. (2014). A review exploring biological activities of hydrazones. Journal of pharmacy & bioallied sciences, 6(2), 69–80. https://doi.org/10.4103/0975-7406.129170
Wang, A. P., Zhang, J. M., Meng, Y. L., Deng, L. Q., Lv, Y. F., Li, C., & Wang, J. Q. (2012). Effects of different sources and levels of dietary gossypol on gossypol residues in plasma and milk of lactating cows. Journal of dairy science, 95(9), 5127–5132. https://doi.org/10.3168/jds.2011-4870
Mao, Z., Bai, J., Jin, X., Mao, W., & Dong, Y. (2021). Construction of a multifunctional 3D nanofiber aerogel loaded with ZnO for wound healing. Colloids and surfaces. B, Biointerfaces, 208, 112070. https://doi.org/10.1016/j.colsurfb.2021.112070
Alven, S., Nqoro, X., & Aderibigbe, B. A. (2020). Polymer-Based Materials Loaded with Curcumin for Wound Healing Applications. Polymers, 12(10), 2286. https://doi.org/10.3390/polym12102286
Alven S, Peter S, Mbese Z, Aderibigbe BA. Polymer-Based Wound Dressing Materials Loaded with Bioactive Agents: Potential Materials for the Treatment of Diabetic Wounds. Polymers (Basel). 2022. Doi: https://doi.org/10.3390/polym14040724. PMID: 35215637; PMCID: PMC887461
Tarakanov, R., Shagdarova, B., Lyalina, T., Zhuikova, Y., Il’ina, A., Dzhalilov, F., & Varlamov, V. (2023). Protective Properties of Copper-Loaded Chitosan Nanoparticles against Soybean Pathogens Pseudomonas savastanoi pv. glycinea and Curtobacterium flaccumfaciens pv. flaccumfaciens. Polymers, 15(5), 1100. https://doi.org/10.3390/polym15051100
Brunetti B, Sanchez MA, Roccia F, Ramieri G. A modified upper lip lift approach for columella reconstruction. J Plast Reconstr Aesthet Surg. 2020;73(12):2239-2260. https://doi.org/10.1016/j.bjps.2020.05.014
Ou, Q., Zhang, S., Fu, C., Yu, L., Xin, P., Gu, Z., Cao, Z., Wu, J., & Wang, Y. (2021). More natural more better: triple natural anti-oxidant puerarin/ferulic acid/polydopamine incorporated hydrogel for wound healing. Journal of Nanobiotechnology, 19(1), 1-18. https://doi.org/10.1186/s12951-021-00973-7
Sen, C. K. (2019). Human Wounds and Its Burden: An Updated Compendium of Estimates. Advances in Wound Care, 8(2), 39-48. https://doi.org/10.1089/wound.2019.0946
Ran, L., Peng, S. Y., Wang, W., Wu, Q., Li, Y. C., & Wang, R. P. (2022). In vitro and in vivo Evaluation of the Bioactive Nanofibers-Encapsulated Benzalkonium Bromide for Accelerating Wound Repair with MRSA Skin Infection. International Journal of Nanomedicine, 17, 4071-4086. https://doi.org/10.2147/ijn.s380786
Lindholm, C., & Searle, R. (2016). Wound management for the 21st century: Combining effectiveness and efficiency. International Wound Journal, 13(S2), 5-15. https://doi.org/10.1111/iwj.12623
Ramona, L., Alexandru, A., Irina, R., Andreea-Isabela, S., & Daniela Ailincai. (2021). Double functionalization of chitosan based nanofibers towards biomaterials for wound healing. Reactive and Functional Polymers, 167, 105028. https://doi.org/10.1016/j.reactfunctpolym.2021.105028
Zhong, Y., Xiao, H., Seidi, F., & Jin, Y. (2020). Natural polymer-based antimicrobial hydrogels without synthetic antibiotics as wound dressings. Biomacromolecules, 21(7), 2983-2995. https://doi.org/10.1021/acs.biomac.0c00760
Venegas-Cervera, G. A., et al. (2021). Biocompatibility studies of polyurethane Electrospun membranes based on arginine as chain extender. Journal of Materials Science: Materials in Medicine, 32(11), 104. https://doi.org/10.1007/s10856-021-06581-z
Yang, Y., Liang, Y., Chen, J., Duan, X., & Guo, B. (2022). Mussel-inspired adhesive antioxidant antibacterial hemostatic conductive hydrogel wound dressing via photopolymerization for infected skin wound healing. Bioactive Materials, 8, 341-354. https://doi.org/10.1016/j.bioactmat.2021.06.014
Assis, A. C. L., Moreira, L. M. C. C., Rocha, B. P., Pereira, M. R. B., de Melo, D. F., Moura, R. O., Azevedo, E. P., Oshiro-Junior, J. A., & Damasceno, B. P. G. L. (2021). N-acylhydrazone Derivative-Loaded Cellulose Acetate Films: Thermoanalytical, Spectroscopic, Mechanical and Morphological Characterization. Polymers (Basel), 13(7), 1-16. https://doi.org/10.3390/polym13142345
Wanderley, D. M. S., Melo, D. F., Silva, L. M., Souza, J. W. L., Pina, H. V., Lima, D. B., Amoah, S. K. S., Borges, S. M. P., Fook, M. V. L., Moura, R. O., Lima, R. S. C., & Damasceno, B. P. G. L. (2020). Biocompatibility and mechanical properties evaluation of chitosan films containing an N-acylhydrazonic derivative. European Journal of Pharmaceutical Sciences, 155, 105547. https://doi.org/10.1016/j.ejps.2020.105547
Wasiak, J., Cleland, H., Campbell, F., & Spinks, A. (2013). Dressings for superficial and partial thickness burns. Cochrane Database of Systematic Reviews, 2013(3), CD002106. https://doi.org/10.1002/14651858.CD002106.pub4
Atiyeh, B. S., Costagliola, M., & Hayek, S. N. (2007). Effect of silver on burn wound infection control and healing: Review of the literature. Burns, 33(2), 139-148. https://doi.org/10.1016/j.burns.2006.06.010
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Brenda Beatriz Torres de Oliveira, Maria Eduarda Alves da Nóbrega, Camila Ananias Bezerra de Lima, Gabryella Garcia Guedes, Luciana Ramos Teixeira, Bolívar Ponciano Goulart de Lima Damasceno, Tharcia Kiara Beserra de Oliveira
This work is licensed under a Creative Commons Attribution 4.0 International License.
Esta licença permite que outros distribuam, remixem, adaptem e desenvolvam seu trabalho, mesmo comercialmente, desde que creditem a revista pela criação original.